524 research outputs found

    On Algorithmic Statistics for space-bounded algorithms

    Full text link
    Algorithmic statistics studies explanations of observed data that are good in the algorithmic sense: an explanation should be simple i.e. should have small Kolmogorov complexity and capture all the algorithmically discoverable regularities in the data. However this idea can not be used in practice because Kolmogorov complexity is not computable. In this paper we develop algorithmic statistics using space-bounded Kolmogorov complexity. We prove an analogue of one of the main result of `classic' algorithmic statistics (about the connection between optimality and randomness deficiences). The main tool of our proof is the Nisan-Wigderson generator.Comment: accepted to CSR 2017 conferenc

    Weak Parity

    Get PDF
    We study the query complexity of Weak Parity: the problem of computing the parity of an n-bit input string, where one only has to succeed on a 1/2+eps fraction of input strings, but must do so with high probability on those inputs where one does succeed. It is well-known that n randomized queries and n/2 quantum queries are needed to compute parity on all inputs. But surprisingly, we give a randomized algorithm for Weak Parity that makes only O(n/log^0.246(1/eps)) queries, as well as a quantum algorithm that makes only O(n/sqrt(log(1/eps))) queries. We also prove a lower bound of Omega(n/log(1/eps)) in both cases; and using extremal combinatorics, prove lower bounds of Omega(log n) in the randomized case and Omega(sqrt(log n)) in the quantum case for any eps>0. We show that improving our lower bounds is intimately related to two longstanding open problems about Boolean functions: the Sensitivity Conjecture, and the relationships between query complexity and polynomial degree.Comment: 18 page

    Auctions with Severely Bounded Communication

    Full text link
    We study auctions with severe bounds on the communication allowed: each bidder may only transmit t bits of information to the auctioneer. We consider both welfare- and profit-maximizing auctions under this communication restriction. For both measures, we determine the optimal auction and show that the loss incurred relative to unconstrained auctions is mild. We prove non-surprising properties of these kinds of auctions, e.g., that in optimal mechanisms bidders simply report the interval in which their valuation lies in, as well as some surprising properties, e.g., that asymmetric auctions are better than symmetric ones and that multi-round auctions reduce the communication complexity only by a linear factor

    On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields

    Full text link
    Recently, Gupta et.al. [GKKS2013] proved that over Q any nO(1)n^{O(1)}-variate and nn-degree polynomial in VP can also be computed by a depth three ΣΠΣ\Sigma\Pi\Sigma circuit of size 2O(nlog3/2n)2^{O(\sqrt{n}\log^{3/2}n)}. Over fixed-size finite fields, Grigoriev and Karpinski proved that any ΣΠΣ\Sigma\Pi\Sigma circuit that computes DetnDet_n (or PermnPerm_n) must be of size 2Ω(n)2^{\Omega(n)} [GK1998]. In this paper, we prove that over fixed-size finite fields, any ΣΠΣ\Sigma\Pi\Sigma circuit for computing the iterated matrix multiplication polynomial of nn generic matrices of size n×nn\times n, must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The importance of this result is that over fixed-size fields there is no depth reduction technique that can be used to compute all the nO(1)n^{O(1)}-variate and nn-degree polynomials in VP by depth 3 circuits of size 2o(nlogn)2^{o(n\log n)}. The result [GK1998] can only rule out such a possibility for depth 3 circuits of size 2o(n)2^{o(n)}. We also give an example of an explicit polynomial (NWn,ϵ(X)NW_{n,\epsilon}(X)) in VNP (not known to be in VP), for which any ΣΠΣ\Sigma\Pi\Sigma circuit computing it (over fixed-size fields) must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The polynomial we consider is constructed from the combinatorial design. An interesting feature of this result is that we get the first examples of two polynomials (one in VP and one in VNP) such that they have provably stronger circuit size lower bounds than Permanent in a reasonably strong model of computation. Next, we prove that any depth 4 ΣΠ[O(n)]ΣΠ[n]\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[\sqrt{n}]} circuit computing NWn,ϵ(X)NW_{n,\epsilon}(X) (over any field) must be of size 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)}. To the best of our knowledge, the polynomial NWn,ϵ(X)NW_{n,\epsilon}(X) is the first example of an explicit polynomial in VNP such that it requires 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)} size depth four circuits, but no known matching upper bound

    Single Parameter Combinatorial Auctions with Partially Public Valuations

    Full text link
    We consider the problem of designing truthful auctions, when the bidders' valuations have a public and a private component. In particular, we consider combinatorial auctions where the valuation of an agent ii for a set SS of items can be expressed as vif(S)v_if(S), where viv_i is a private single parameter of the agent, and the function ff is publicly known. Our motivation behind studying this problem is two-fold: (a) Such valuation functions arise naturally in the case of ad-slots in broadcast media such as Television and Radio. For an ad shown in a set SS of ad-slots, f(S)f(S) is, say, the number of {\em unique} viewers reached by the ad, and viv_i is the valuation per-unique-viewer. (b) From a theoretical point of view, this factorization of the valuation function simplifies the bidding language, and renders the combinatorial auction more amenable to better approximation factors. We present a general technique, based on maximal-in-range mechanisms, that converts any α\alpha-approximation non-truthful algorithm (α1\alpha \leq 1) for this problem into Ω(αlogn)\Omega(\frac{\alpha}{\log{n}}) and Ω(α)\Omega(\alpha)-approximate truthful mechanisms which run in polynomial time and quasi-polynomial time, respectively

    When Analysis Fails: Heuristic Mechanism Design via Self-Correcting Procedures

    Get PDF
    Computational mechanism design (CMD) seeks to understand how to design game forms that induce desirable outcomes in multi-agent systems despite private information, self-interest and limited computational resources. CMD finds application in many settings, in the public sector for wireless spectrum and airport landing rights, to Internet advertising, to expressive sourcing in the supply chain, to allocating computational resources. In meeting the demands for CMD in these rich domains, we often need to bridge from the theory of economic mechanism design to the practice of deployable, computational mechanisms. A compelling example of this need arises in dynamic combinatorial environments, where classic analytic approaches fail and heuristic, computational approaches are required. In this talk I outline the direction of self-correcting mechanisms, which dynamically modify decisions via “output ironing" to ensure truthfulness and provide a fully computational approach to mechanism design. For an application, I suggest heuristic mechanisms for dynamic auctions in which bids arrive over time and supply may also be uncertain.Engineering and Applied Science

    Pseudo-finite hard instances for a student-teacher game with a Nisan-Wigderson generator

    Full text link
    For an NP intersect coNP function g of the Nisan-Wigderson type and a string b outside its range we consider a two player game on a common input a to the function. One player, a computationally limited Student, tries to find a bit of g(a) that differs from the corresponding bit of b. He can query a computationally unlimited Teacher for the witnesses of the values of constantly many bits of g(a). The Student computes the queries from a and from Teacher's answers to his previous queries. It was proved by Krajicek (2011) that if g is based on a hard bit of a one-way permutation then no Student computed by a polynomial size circuit can succeed on all a. In this paper we give a lower bound on the number of inputs a any such Student must fail on. Using that we show that there is a pseudo-finite set of hard instances on which all uniform students must fail. The hard-core set is defined in a non-standard model of true arithmetic and has applications in a forcing construction relevant to proof complexity
    corecore